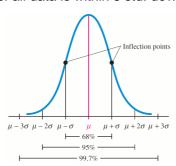
# 

A **Normal Distribution** describes many real life data sets. The data histogram looks like a bell curve.

$$\mu$$
 (mu) = population mean


 $\sigma$  (sigma) = population standard deviation

Remarkably, all you need are these two values to know the spread of data about the mean.

3

 $\mu$  (mu) = population mean  $\sigma$  (sigma) = population standard deviation  $\frac{1}{\mu - 3\sigma} \frac{1}{\mu - 2\sigma} \frac{1}{\mu - \sigma} \frac{1}{\mu + \sigma} \frac{1}{\mu + 2\sigma} \frac{1}{\mu + 3\sigma} \frac{1}{\mu + 3\sigma} \frac{1}{\mu - 3\sigma}$ 

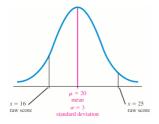
68% of all data is within 1 std. dev. of the mean. 95% of all data is within 2 std. dev. of the mean. 99.7% of all data is within 3 std. dev. of the mean.



The number of standard deviations a data value is away from the mean is called the z-score.

**FORMULA FOR CONVERTING RAW SCORES TO Z-SCORES** Assume a normal distribution has a mean of  $\mu$  and a standard deviation of  $\sigma$ . We use the equation  $z = \frac{x - \mu}{\sigma}$ 

to convert a value *x* in the nonstandard distribution to a *z*-score.


Now every normal distribution can be converted to a **Standard Normal Distribution**, which has  $\mu = 0$  and  $\sigma = 1$ .

### Example:

Suppose the mean of a normal distribution is 20 and its std dev is 3.

Find the z-score of 25.

Find the z-score of 16.



7

### Example:

Suppose the mean of a normal distribution is 20 and its std dev is 3.

Find the z-score of 25.

$$z = \frac{x - \mu}{\sigma}$$

$$= \frac{25 - 20}{3}$$

$$= \frac{5}{3} = 1.67.$$

Find the z-score of 16.

$$z = \frac{x - \mu}{\sigma}$$

$$= \frac{16 - 20}{3}$$

$$= \frac{-4}{3} = -1.33.$$



8

The area between z-scores gives the percent of data values between them.

Below is a table that gives the area between the mean  $(\mu)$  and a given z-score.

| .00 | .000 | .56 | .212 | 1.12 | .369 | 1.68 | .454 | 2.24 | .488 | 2.80 | .497 |
|-----|------|-----|------|------|------|------|------|------|------|------|------|
| .01 | .004 | .57 | .216 | 1.13 | .371 | 1.69 | .455 | 2.25 | .488 | 2.81 | .498 |
| .02 | .008 | .58 | .219 | 1.14 | .373 | 1.70 | .455 | 2.26 | .488 | 2.82 | .498 |
| .03 | .012 | .59 | .222 | 1.15 | .375 | 1.71 | .456 | 2.27 | .488 | 2.83 | .498 |
| .04 | .016 | .60 | .226 | 1.16 | .377 | 1.72 | .457 | 2.28 | .489 | 2.84 | .498 |
| .05 | .020 | .61 | .229 | 1.17 | .379 | 1.73 | .458 | 2.29 | .489 | 2.85 | .498 |
| .06 | .024 | .62 | .232 | 1.18 | .381 | 1.74 | .459 | 2.30 | .489 | 2.86 | .498 |
| .07 | .028 | .63 | .236 | 1.19 | .383 | 1.75 | .460 | 2.31 | .490 | 2.87 | .498 |
| .08 | .032 | .64 | .239 | 1.20 | .385 | 1.76 | .461 | 2.32 | .490 | 2.88 | .498 |
| .09 | .036 | .65 | .242 | 1.21 | .387 | 1.77 | .462 | 2.33 | .490 | 2.89 | .498 |
| .10 | .040 | .66 | .245 | 1.22 | .389 | 1.78 | .463 | 2.34 | .490 | 2.90 | .498 |

As this gives areas between the middle (mean =  $\mu$ ) and a positive z-score:

Always draw a picture.

For two postive z-scores – subtract areas

A negative z-score is on the left side of the mean.

10

Find the percent of data between z=0 and z=1.3

| .00 | .000 | .56 | .212 | 1.12 | .369 | 1.68 | .454 | 2,24 | .488 | 2.80 | .497 |
|-----|------|-----|------|------|------|------|------|------|------|------|------|
| .01 | .004 | .57 | .216 | 1.13 | .371 | 1.69 | .455 | 2.25 | .488 | 2.81 | .498 |
| .02 | .008 | .58 | .219 | 1.14 | .373 | 1.70 | .455 | 2.26 | .488 | 2.82 | .498 |
| .03 | .012 | .59 | .222 | 1.15 | .375 | 1.71 | .456 | 2.27 | .488 | 2.83 | .498 |
| .04 | .016 | .60 | .226 | 1.16 | .377 | 1.72 | .457 | 2.28 | .489 | 2.84 | .498 |
| .05 | .020 | .61 | .229 | 1.17 | .379 | 1.73 | .458 | 2.29 | .489 | 2.85 | .498 |
| .06 | .024 | .62 | .232 | 1.18 | .381 | 1.74 | .459 | 2.30 | .489 | 2.86 | .498 |
| .07 | .028 | .63 | .236 | 1.19 | .383 | 1.75 | .460 | 2.31 | .490 | 2.87 | .498 |
| .08 | .032 | .64 | .239 | 1.20 | .385 | 1.76 | .461 | 2.32 | .490 | 2.88 | .498 |
| .09 | .036 | .65 | .242 | 1.21 | .387 | 1.77 | .462 | 2.33 | .490 | 2.89 | .498 |
| .10 | .040 | .66 | .245 | 1.22 | .389 | 1.78 | .463 | 2.34 | .490 | 2.90 | .498 |

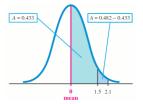
11

Find the percent of data between z=0 and z=1.3

Area between = 0.403 or 40.3%

12

## Find the percent of data between z=1.5 and z=2.1


| .00 | .000 | .56 | .212 | 1.12 | .369 | 1.68 | .454 | 2.24 | .488 | 2.80 | .497 |
|-----|------|-----|------|------|------|------|------|------|------|------|------|
| .01 | .004 | .57 | .216 | 1.13 | .371 | 1.69 | .455 | 2.25 | .488 | 2.81 | .498 |
| .02 | .008 | .58 | .219 | 1.14 | .373 | 1.70 | .455 | 2.26 | .488 | 2.82 | .498 |
| .03 | .012 | .59 | .222 | 1.15 | .375 | 1.71 | .456 | 2.27 | .488 | 2.83 | .498 |
| .04 | .016 | .60 | .226 | 1.16 | .377 | 1.72 | .457 | 2.28 | .489 | 2.84 | .498 |
| .05 | .020 | .61 | .229 | 1.17 | .379 | 1.73 | .458 | 2.29 | .489 | 2.85 | .498 |
| .06 | .024 | .62 | .232 | 1.18 | .381 | 1.74 | .459 | 2.30 | .489 | 2.86 | .498 |
| .07 | .028 | .63 | .236 | 1.19 | .383 | 1.75 | .460 | 2.31 | .490 | 2.87 | .498 |
| .08 | .032 | .64 | .239 | 1.20 | .385 | 1.76 | .461 | 2.32 | .490 | 2.88 | .498 |
| .09 | .036 | .65 | .242 | 1.21 | .387 | 1.77 | .462 | 2.33 | .490 | 2.89 | .498 |
| .10 | .040 | .66 | .245 | 1.22 | .389 | 1.78 | .463 | 2.34 | .490 | 2.90 | .498 |

13

Find the percent of data between z=1.5 and z=2.1

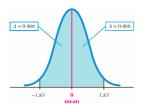
For 
$$z = 1.5 A = 0.482$$

For 
$$z = 2.1 A = 0.433$$



Area between = 0.482 - 0.433 = 0.051 or 5.1%

14


# Find the percent of data between z=0 and z=1.3

| .00 | .000 | .56 | .212 | 1.12 | .369 | 1.68 | .454 | 2.24 | .488 | 2.80 | .497 |
|-----|------|-----|------|------|------|------|------|------|------|------|------|
| .01 | .004 | .57 | .216 | 1.13 | .371 | 1.69 | .455 | 2.25 | .488 | 2.81 | .498 |
| .02 | .008 | .58 | .219 | 1.14 | .373 | 1.70 | .455 | 2.26 | .488 | 2.82 | .498 |
| .03 | .012 | .59 | .222 | 1.15 | .375 | 1.71 | .456 | 2.27 | .488 | 2.83 | .498 |
| .04 | .016 | .60 | .226 | 1.16 | .377 | 1.72 | .457 | 2.28 | .489 | 2.84 | .498 |
| .05 | .020 | .61 | .229 | 1.17 | .379 | 1.73 | .458 | 2.29 | .489 | 2.85 | .498 |
| .06 | .024 | .62 | .232 | 1.18 | .381 | 1.74 | .459 | 2.30 | .489 | 2.86 | .498 |
| .07 | .028 | .63 | .236 | 1.19 | .383 | 1.75 | .460 | 2.31 | .490 | 2.87 | .498 |
| .08 | .032 | .64 | .239 | 1.20 | .385 | 1.76 | .461 | 2.32 | .490 | 2.88 | .498 |
| .09 | .036 | .65 | .242 | 1.21 | .387 | 1.77 | .462 | 2.33 | .490 | 2.89 | .498 |
| .10 | .040 | .66 | .245 | 1.22 | .389 | 1.78 | .463 | 2.34 | .490 | 2.90 | .498 |

15

Find the percent of data between z=-1.83 and z=0

For 
$$z = 1.83 A = 0.466$$
  
So  $z = -1.83 A = 0.466$   
on the other side.



Area between = 0.466 or 46.6%

16

We can also go backwards.

Find a z-score so that 37.1% of the data is between the mean and it.

| .00 | .000 | .56 | .212 | 1.12 | .369 | 1.68 | .454 | 2,24 | .488 | 2.80 | .497 |
|-----|------|-----|------|------|------|------|------|------|------|------|------|
| .01 | .004 | .57 | .216 | 1.13 | .371 | 1.69 | .455 | 2.25 | .488 | 2.81 | .498 |
| .02 | .008 | .58 | .219 | 1.14 | .373 | 1.70 | .455 | 2.26 | .488 | 2.82 | .498 |
| .03 | .012 | .59 | .222 | 1.15 | .375 | 1.71 | .456 | 2.27 | .488 | 2.83 | .498 |
| .04 | .016 | .60 | .226 | 1.16 | .377 | 1.72 | .457 | 2.28 | .489 | 2.84 | .498 |
| .05 | .020 | .61 | .229 | 1.17 | .379 | 1.73 | .458 | 2.29 | .489 | 2.85 | .498 |
| .06 | .024 | .62 | .232 | 1.18 | .381 | 1.74 | .459 | 2.30 | .489 | 2.86 | .498 |
| .07 | .028 | .63 | .236 | 1.19 | .383 | 1.75 | .460 | 2.31 | .490 | 2.87 | .498 |
| .08 | .032 | .64 | .239 | 1.20 | .385 | 1.76 | .461 | 2.32 | .490 | 2.88 | .498 |
| .09 | .036 | .65 | .242 | 1.21 | .387 | 1.77 | .462 | 2.33 | .490 | 2.89 | .498 |
| .10 | .040 | .66 | .245 | 1.22 | .389 | 1.78 | .463 | 2.34 | .490 | 2.90 | .498 |

17

We can also go backwards.

Find a z-score so that 37.1% of the data is between the mean and it.

$$z = 1.13$$

If  $\mu = 100$  and  $\sigma = 20$ , find the raw data x.

18

We can also go backwards.

Find a z-score so that 37.1% of the data is between the mean and it.

$$z = 1.13$$

If  $\mu = 100$  and  $\sigma = 20$ , find the raw data x.

$$z = (x - \mu)/\sigma$$
  
 $1.13 = (x - 100)/20$   
 $22.6 = x - 100$   
 $x = 122.6$ 

Overall idea:

 $Raw\ data\ x \quad \leftrightarrow \quad z\text{-score} \quad \leftrightarrow \quad areas$ 

use: 
$$z = \frac{x - \mu}{\sigma}$$
 Table

20